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Abstract. Video-to-video synthesis (vid2vid) aims for converting high-
level semantic inputs to photorealistic videos. While existing vid2vid
methods can achieve short-term temporal consistency, they fail to en-
sure the long-term one. This is because they lack knowledge of the 3D
world being rendered and generate each frame only based on the past few
frames. To address the limitation, we introduce a novel vid2vid frame-
work that efficiently and effectively utilizes all past generated frames
during rendering. This is achieved by condensing the 3D world rendered
so far into a physically-grounded estimate of the current frame, which
we call the guidance image. We further propose a novel neural network
architecture to take advantage of the information stored in the guidance
images. Extensive experimental results on several challenging datasets
verify the effectiveness of our approach in achieving world consistency—
the output video is consistent within the entire rendered 3D world.

Keywords: neural rendering, video synthesis, GAN

1 Introduction

Video-to-video synthesis [80] concerns generating a sequence of photorealistic
images given a sequence of semantic representations extracted from a source
3D world. For example, the representations can be the semantic segmentation
masks rendered by a graphics engine while driving a car in a virtual city [80].
The representations can also be the pose maps extracted from a source video of
a person dancing, and the application is to create a video of a different person
performing the same dance [8]. From the creation of a new class of digital art-
works to applications in computer graphics, the video-to-video synthesis task has
many exciting practical use-cases. A key requirement of any such video-to-video
synthesis model is the ability to generate images that are not only individually
photorealistic, but also temporally smooth. Moreover, the generated images have
to follow the geometric and semantic structure of the source 3D world.

While we have observed steady improvement in photorealism and short-term
temporal stability in the generation results, we argue that one crucial aspect of
the problem has been largely overlooked, which is the long-term temporal con-
sistency problem. As a specific example, when visiting the same location in the
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Fig. 1: Imagine moving around in a world such as the one abstracted at the
top. As you move from locations 1ÑNÑ1, you would expect the appearance of
previously seen walls and people to remain unchanged. However, current video-
to-video synthesis methods such as vid2vid [80] or our improved architecture
combining vid2vid with SPADE [61] cannot produce such world-consistent videos
(third and second rows). Only our method is able to produce videos consistent
over viewpoints by adding a mechanism for world consistency (first row).

Please view with Acrobat Reader. Click any middle column image to play video.

virtual city, an existing vid2vid method [79,80] could generate an image that is
very different from the one it generated when the car first visited the location,
despite using the same semantic inputs. Existing vid2vid methods rely on opti-
cal flow warping and generate an image conditioned on the past few generated
images. While such operations can ensure short-term temporal stability, they
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cannot guarantee long-term temporal consistency. Existing vid2vid models have
no knowledge of what they have rendered in the past. Even for a short round-trip
in a virtual room, these methods fail to preserve the appearances of the wall and
the person in the generated video, as illustrated in Fig. 1.

In this paper, we attempt to address the long-term temporal consistency
problem, by bolstering vid2vid models with memories of the past frames. By
combining ideas from scene flow [74] and conditional image synthesis models [61],
we propose a novel architecture that explicitly enforces consistency in the entire
generated sequence. We perform extensive experiments on several benchmark
datasets, with comparisons to the state-of-the-art methods. Both quantitative
and visual results verify that our approach achieves significantly better image
quality and long-term temporal stability. On the application side, we also show
that our approach can be used to generate videos consistent across multiple
viewpoints, enabling simultaneous multi-agent world creation and exploration.

2 Related work

Semantic Image Synthesis [11,51,61,62,81] refers to the problem of converting
a single input semantic representation to an output photorealistic image. Built
on top of the generative adversarial networks (GAN) [24] framework, existing
methods [51,61,81] propose various novel network architectures to advance state-
of-the-art. Our work is built on the SPADE architecture proposed by Park et
al . [61] but focuses on the temporal stability issue in video synthesis.

Conditional GANs synthesize data conditioned on user input. This stands
in contrast to unconditional GANs that synthesize data solely based on ran-
dom variable inputs [24,26,38,39]. Based on the input type, there exist label-
conditional GANs [6,57,59,90], text-conditional GANs [63,87,91], image-conditional
GANs [3,5,14,31,33,43,49,50,65,70,96], scene-graph conditional GANs [34], and
layout-conditional GANs [92]. Our method is a video-conditional GAN, where
we generate a video conditioned on an input video. We address the long-term
temporal stability issue that the state-of-the-art overlooks [8,79,80].

Video synthesis exists in many forms, including 1) unconditional video syn-
thesis [64,73,76], which converts random variable inputs to video clips, 2) future
video prediction [17,19,27,30,36,42,44,47,53,54,60,69,75,77,78,88], which gener-
ates future video frames based on the observed ones, and 3) video-to-video syn-
thesis [8,12,22,79,80,95], which converts an input semantic video to a real video.
Our work belongs to the last category. Our method treats the input video as one
from a self-consistent world so that when the agent returns to a spot that it has
previously visited, the newly generated frames should be consistent with the past
generated frames. While a few works have focused on improving the temporal
consistency of an input video [4,41,89], our method does not treat consistency as
a post-processing step, but rather as a core part of the video generation process.

Novel-view synthesis aims to synthesize images at unseen viewpoints given
some viewpoints of the scene. Most of the existing works require images at
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multiple reference viewpoints as input [13,20,21,28,35,56,94]. While some works
can synthesize novel views based on a single image [68,82,85], the synthesized
views are usually close to the reference views. Our work differs from these works
in the sense that our input is different – instead of using a set of RGB images,
our network takes in a sequence of semantic maps. If we directly treat all past
synthesized frames as reference views, it makes the memory requirement grow
linearly with respect to the video length. If we only use the latest frames, the
system cannot handle long-term consistency as shown in Fig. 1. Instead, we
propose a novel framework to keep track of the synthesis history in this work.

The closest related works are those on neural rendering [2,55,67,71], which
can re-render a scene from arbitrary viewpoints after training on a set of given
viewpoints. However, note that these methods still require RGB images from
different viewpoints as input, making it unsuitable for applications such as those
to game engines. On the other hand, our method can directly generate RGB im-
ages using semantic inputs, so rendering a virtual world becomes more effortless.
Moreover, they need to train a separate model (or part of the model) for each
scene, while we only need one model per dataset, or domain.

3 World-consistent video-to-video synthesis

Background. Recent image-to-image translation methods perform extremely
well when turning semantic images to realistic outputs. To produce videos in-
stead of images, simply doing it frame-by-frame will usually result in severe
flickering artifacts [80]. To resolve this, vid2vid [80] proposes to take both the
semantic inputs and L previously generated frames as input to the network (e.g .
L “ 3). The network then generates three outputs – a hallucinated frame, a flow
map, and a (soft) mask. The flow map is used to warp the previous frame and
linearly combined with the hallucinated frame using the soft mask. Ideally, the
network should reuse the content in the warped frame as much as possible, and
only use the disoccluded parts from the hallucinated frame.

While the above framework reduces flickering between neighboring frames, it
still struggles to ensure long-term consistency. This is because it only keeps track
of the past L frames, and cannot memorize everything in the past. Consider the
scenario in Fig. 1, where an object moves out of and back in the field-of-view.
In this case, we would want to make sure its appearance is similar during the
revisit, but that cannot be handled by existing frameworks like vid2vid [80].

In light of this, we propose a new framework to handle world-consistency.
It is a superset of temporal consistency, which only ensures consistency between
frames in a video. A world-consistent video should not only be temporally stable,
but also be consistent across the entire 3D world the user is viewing. This not
only makes the output look more realistic, but also enables applications such as
the multi-player scenario where different players can view the same scene from
different viewpoints. We achieve this by using a novel guidance image conditional
scheme, which is detailed below.
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Fig. 2: Overview of guidance image generation for training. Consider a scene
in which a camera(s) with known parameters and positions travels over time
t “ 0, ¨ ¨ ¨ , N . At t “ 0, the scene is textureless and an output image is generated
for this viewpoint. The output image is then back-projected to the scene and
a guidance image for a subsequent camera position is generated by projecting
the partially textured point cloud. Using this guidance image, the generative
method can produce an output that is consistent across views and smooth over
time. Note that the guidance image can be noisy, misaligned, and have holes,
and the generation method should be robust to such inputs.

Guidance images and their generation. The lack of knowledge about the
world structure being generated limits the ability of vid2vid to generate view-
consistent outputs. As shown in Fig. 5 and Sec. 4, the color and structure of
the objects generated by vid2vid [80] tend to drift over time. We believe that in
order to produce realistic outputs that are consistent over time and viewpoint
change, an ideal method must be aware of the 3D structure of the world.

To achieve this, we introduce the concept of “guidance images”, which are
physically-grounded estimates of what the next output frame should look like,
based on how the world has been generated so far. As alluded to in their name,
the role of these “guidance images” is to guide the generative model to pro-
duce colors and textures that respect previous outputs. Prior works including
vid2vid [80] rely on optical flows to warp the previous frame for producing an
estimate of the next frame. Our guidance image differs from this warped frame
in two aspects. First, instead of using optical flow, the guidance image should
be generated by using the motion field, or scene flow, which describes the true
motion of each 3D point in the world1. Second, the guidance image should ag-
gregate information from all past viewpoints (and thus frames), instead of only
the direct previous frames as in vid2vid. This makes sure that the generated
frame is consistent with the entire history.

While estimating motion fields without an RGB-D sensor [23] or a rendering
engine [18] is not easy, we can obtain motion fields for the static parts of the world

1 As an example, consider a textureless sphere rotating under constant illumination.
In this case, the optical flow would be zero, but the motion field would be nonzero.
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by reconstructing part of the 3D world using structure from motion (SfM) [52,72].
This enables us to generate guidance images as shown in Fig. 2 for training our
video-to-video synthesis method using datasets captured by regular cameras.
Once we have the 3D point cloud of the world, the video synthesis process can
be thought of as a camera moving through the world and texturing every new
3D point it sees. Consider a camera moving through space and time as shown in
the left part of Fig. 2. Suppose we generate an output image at t “ 0. This image
can be back-projected to the 3D point cloud and colors can be assigned to the
points, so as to create a persistent representation of the world. At a later time
step, t “ N , we can obtain the projection of the 3D point cloud to the camera
and create a guidance image leveraging estimated motion fields. Our method
can then generate an output frame based on the guidance image.

Although we generate guidance images using the projection of 3D point
clouds, it can also be generated by any other method that gives a reasonable
estimate. This makes the concept powerful, as we can use different sources to
generate guidance images at training and test time. For example, at test time we
can generate guidance images using a graphics engine, which can provide ground
truth 3D correspondences. This enables just-in-time colorization of a virtual 3D
world with real-world colors and textures, as we move through the world.

Note that our guidance image also differs from the projected image used in
prior works like Meshry et al . [55] in several aspects. First, in their case, the
3D point cloud is fixed once constructed, while in our case it is constantly being
“colorized” as we synthesize more and more frames. As a result, our guidance
image is blank at the beginning, and can become denser depending on the view-
point. Second, the way we use these guidance images to generate outputs is also
different. The guidance images can have misalignments and holes due to limita-
tions of SfM, for example in the background and in the person’s head in Fig. 2.
As a result, our method also differs from DeepFovea [37], which inpaints sparsely
but accurately rendered video frames. In the following subsection, we describe a
method that is robust to noises in guidance images, so it can produce outputs
consistent over time and viewpoints.

Framework for generating videos using guidance images. Once the guid-
ance images are generated, we are able to utilize them to synthesize the next
frame. Our generator network is based on the SPADE architecture proposed by
Park et al . [61], which accepts a random vector encoding the image style as input
and uses a series of SPADE blocks and upsampling layers to generate an output
image. Each SPADE block takes a semantic map as input and learns to modulate
the incoming feature maps through an affine transform y “ x ¨ γseg`βseg, where
x is the incoming feature map, and γseg and βseg are predicted from the input
segmentation map.

An overview of our method is shown in Fig. 3. At a high-level, our method
consists of four sub-networks: 1) an input label embedding network (orange),
2) an image encoder (red), 3) a flow embedding network (green), and 4) an im-
age generator (gray). In our method, we make two modifications to the original
SPADE network. First, we feed in the concatenated labels (semantic segmen-
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Fig. 3: Overview of our world consistent video-to-video synthesis architecture.
Our Multi-SPADE module takes input labels, warped previous frames, and guid-
ance images to modulate the features in each layer of our generator.

tation, edge maps, etc.) to a label embedding network (orange), and extract
features in corresponding output layers as input to each SPADE block in the
generator. Second, to keep the image style consistent over time, we encode the
previously synthesized frame using the image encoder (red), and provide this
embedding to our generator (gray) in place of the random vector2.

Utilizing guidance images. Although using this modified SPADE architecture
produces output images with better visual quality than vid2vid [80], the out-
puts are not temporally stable, as shown in Sec. 4. To ensure world-consistency
of the output, we would want to incorporate information from the introduced
guidance images. Simply linearly combining it with the hallucinated frame from
the SPADE generator is problematic, since the hallucinated frame may contain
something very different from the guidance images. Another way is to directly
concatenate it with the input labels. However, the semantic inputs and guid-
ance images have different physical meanings. Besides, unlike semantic inputs,
which are labeled densely (per pixel), the guidance images are labeled sparsely.
Directly concatenating them would require the network to compensate for the
difference. Hence, to avoid these potential issues, we choose to treat these two
types of inputs differently.

To handle the sparsity of the guidance images, we first apply partial convolu-
tions [48] on these images to extract features. Partial convolutions only convolve
valid regions in the input with the convolution kernels, so the output features
can be uncontaminated by the holes in the image. These features are then used

2 When generating the first frame where no previous frame exists, we use an encoder
which accepts the semantic map as input.
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Segmentation Depth Guidance Image Generated Output

Fig. 4: Sample inputs and generated outputs on Cityscapes. Note how the guid-
ance image is initially black, and becomes denser as more frames are synthesized.
Click on any image to play video. Please view with Acrobat Reader.

to generate affine transformation parameters γguidance and βguidance, which are
inserted into existing SPADE blocks while keeping the rest of the blocks un-
touched. This results in a Multi-SPADE module, which allows us to use multi-
ple conditioned inputs in sequence, so we can not only condition on the current
input labels, but also on our guidance images,

y “ px ¨ γlabel ` βlabelq ¨ γguidance ` βguidance. (1)

Using this module yields several benefits. First, conditioning on these maps
generates more temporally smooth and higher quality frames than simple linear
blending techniques. Separating the two types of input (semantic labels and guid-
ance images) also allows us to adopt different types of convolutions (i.e. normal
vs. partial). Second, since most of the network architecture remains unchanged,
we can initialize the weights of the generator with one trained for single image
generation. It is easy to collect large training datasets for single image genera-
tion by crawling the internet, while video datasets can be harder to collect and
annotate. After the single image generator is trained, we can train a video gen-
erator by just training the newly added layers (i.e. layers generating γguidance

and βguidance) and only finetune the other parts of the network.

Handling dynamic objects. The guidance image allows us to generate world-
consistent outputs over time. However, since the guidance is generated based on
SfM for real-world scenes, it has the inherent limitation that SfM cannot handle
dynamic objects. To resolve this issue, we revert to using optical flow-warped
frames to serve as additional maps in addition to the guidance images we have
from SfM. The complete Multi-SPADE module then becomes

y “
`

px ¨ γlabel ` βlabelq ¨ γflow ` βflow

˘

¨ γguidance ` βguidance, (2)

where γflow and βflow are generated using a flow-embedding network (green)
applied on the optical flow-warped previous frame. This provides additional
constraints that the generated frame should be consistent even in the dynamic
regions. Note that this is needed only due to the limitation of SfM, and can
potentially be removed when ground truth / high quality 3D registrations are
available, for example in the case of game engines, or RGB-D data capture.

Figure 4 shows a sample set of inputs and outputs generated by our method
on the Cityscapes dataset.
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4 Experiments

Implementation details. We train our network in two stages. In the first stage,
we only train our network to generate single images. This means that only the
first SPADE layer of our Multi-SPADE block (visualized in Fig. 3) is trained.
Following this, we have a network that can generate high-quality single frame
outputs. In the second stage, we train on video clips, progressively doubling the
generated video length every epoch, starting from 8 frames and stopping at 32
frames. In this stage, all 3 SPADE layers of each Multi-SPADE block are trained.
We found that this two-stage pipeline makes the training faster and more stable.
We observed that the ordering of the flow and guidance SPADEs did not make
a significant difference in the output quality. We train the network for 20 epochs
in each stage, and this takes about 10 days on an NVIDIA DGX-1 (8 V-100
GPUs) for an output resolution of 1024ˆ 512.

We train our generator with the multi-scale image discriminator using percep-
tual and GAN feature matching losses as in SPADE [61]. Following vid2vid [80],
we add a temporal video discriminator at two temporal scales and a warping
loss that encourages the output frame to be similar to the optical flow-warped
previous frame. We also add a loss term to encourage the output frame to cor-
respond to the guidance image, and this is necessary to ensure view consistency.
Additional details about architecture and loss terms can be found in Appendix A
and B. Code and trained models will be released upon publication.

Datasets. We train and evaluate our method on three datasets, Cityscapes [15],
MannequinChallenge [45], and ScanNet [16], as they have mostly static scenes
where existing SfM methods perform well.

• Cityscapes [15]. This dataset consists of driving videos of 2048ˆ 1024 res-
olution captured in several German cities, using a pair of stereo cameras.
We split this dataset into a training set of 3500 videos with 30 frames each,
and a test set of 3 long sequences with 600-1200 frames each, similar to
vid2vid [80]. As not all the images are labeled with segmentation masks,
we annotate the images using the network from Zhu et al . [97], which is
based on a DeepLabv3-Plus [10]-like architecture with a WideResNet38 [84]
backbone.

• MannequinChallenge [45]. This dataset contains video clips captured us-
ing hand-held cameras, of people pretending frozen in a large variety of poses,
imitating mannequins. We resize all frames to 1024ˆ512 and randomly split
this dataset into 3040 train sequences and 292 test sequences, with sequence
lengths ranging from 5-140 frames. We generate human body segmentation
and part-specific UV coordinate maps using DensePose [25,83] and body
poses using OpenPose [7].

• ScanNet [16]. This dataset contains multiple video clips captured in a total
of 706 indoor rooms. We set aside 50 rooms for testing, and the rest for
training. From each video sequence, we extracted 3 sub-sequences of length
at most 100, resulting in 4000 train sequences and 289 test sequences, with
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images of size 512ˆ 512. We used the provided segmentation maps based on
the NYUDv2 [58] 40 labels.

For all datasets, we also use MegaDepth [46] to generate depth maps and add
the visualized inverted depth images as input. As the MannequinChallenge and
ScanNet datasets contain a large variety of objects and classes which are not
fully annotated, we use edge maps produced by HED [86] in order to better
represent the input content. In order to generate guidance images, we performed
SfM on all the video sequences using OpenSfM [1], which provided 3D point
clouds and estimated cameras poses and parameters as output.

Baselines. We compare our method against the following strong baselines.

• vid2vid [80]. This is the prior state-of-the-art method for video-to-video syn-
thesis. For comparison on Cityscapes, we use the publicly available pre-
trained model. For the other two datasets, we train vid2vid from scratch
using the public code, while providing the same input labels (semantic seg-
mentation, depth, edge maps, etc.) as to our method.

• Inpainting [48]. We train a state-of-the-art partial convolution-based inpaint-
ing method to fill in the pixels missing from our guidance images. We train
the models from scratch for each dataset, using masks obtained from the
corresponding guidance images.

• Ours w/o W.C. (World Consistency). As an ablation, we also compare against
our model that does not use guidance images. In this case, only the first two
SPADE layers in each Multi-SPADE block are trained (label and flow-warped
previous output SPADEs). Other details are the same as our full model.

Evaluation metrics. We use both objective and subjective metrics for evalu-
ating our model against the baselines.

• Segmentation accuracy and Fréchet Inception Distance (FID). We adopt
metrics widely used in prior work on image synthesis [11,61,81] to measure
the quality of generated video frames. We evaluate the output frames based
on how well they can be segmented by a trained segmentation network. We
report both the mean Intersection-Over-Union (mIOU) and Pixel Accuracy
(P.A.) using the PSPNet [93] (Cityscapes) and DeepLabv2 [9] (Mannequin-
Challenge & ScanNet). We also use the Fréchet Inception Distance (FID) [29]
to measure the distance between the distributions of the generated and real
images, using the standard Inception-v3 network.

• Human preference score. Using Amazon Mechanical Turk (AMT), we per-
form a subjective visual test to gauge the relative quality of videos. We
evaluate videos on two criteria: 1) photorealism and 2) temporal stability.
The first aims to find which generated video looks more like a real video,
while the second aims to find which one is more temporally smooth and has
lesser flickering. For each question, an AMT participant is shown two videos
synthesized by two different methods, and asked to choose the better one ac-
cording to the current criterion. We generate several hundred questions for
each dataset, each of them is answered by 3 different workers. We evaluate
an algorithm by the ratio that its outputs are preferred.
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Table 1: Comparison scores. Ó means lower is better, while Ò means the opposite.

Method
Cityscapes MannequinChallenge ScanNet

FIDÓ mIOUÒ P.A.Ò FIDÓ mIOUÒ P.A.Ò FIDÓ mIOUÒ P.A.Ò

Image synthesis models
SPADE [61] 48.25 0.63 0.95 29.99 0.13 0.63 31.46 0.08 0.54

Video synthesis models
vid2vid [80] 69.07 0.55 0.94 72.25 0.05 0.45 60.03 0.04 0.35
Ours w/o W.C. 51.51 0.62 0.95 27.23 0.17 0.67 20.93 0.12 0.62
Ours 49.89 0.61 0.95 22.69 0.19 0.69 21.07 0.13 0.63

Table 2: Human preference scores. Higher is better.
Compared Methods Cityscapes MannequinChallenge ScanNet

Image Realism
Ours/vid2vid [80] 0.73/0.27 0.83/0.17 0.77/0.23

Temporal Stability
Ours/vid2vid [80] 0.75/0.25 0.63/0.37 0.82/0.18

Table 3: Forward-backward consistency. 4 means difference.

Method
Cityscapes MannequinChallenge ScanNet

4RGBÓ 4LABÓ 4RGBÓ 4LABÓ 4RGBÓ 4LABÓ

vid2vid [80] 14.90 3.46 37.56 9.42 46.30 12.16
Ours 8.73 2.04 12.61 3.61 11.85 3.41

• Forward-Backward consistency. A major contribution of our work is generat-
ing outputs that are consistent over a longer duration of time with the world
that was previously generated. All our datasets have videos that explore new
parts of the world over time, rarely revisiting previously explored parts. How-
ever, a simple way to revisit a location is to play the video in forward and then
in reverse, i.e. arrange frames from time t “ 0, 1, ¨ ¨ ¨ , N´1, N,N´1, ¨ ¨ ¨ , 1, 0.
We can then compare the first produced and last produced frames and mea-
sure their difference. We measure the difference per-pixel in both RGB and
LAB space, and a lower value would indicate better long-term consistency.

Main results. In Table 1, we compare our proposed approach against vid2vid [80],
as well as SPADE [61], which is the single image generator that our method builds
upon. We also compare against a version of our method that does not use guid-
ance images and is thus not world-consistent (Ours w/o W.C.). Inpainting [48]
could not provide meaningful output images without large artifacts, as shown in
Fig 5. We can observe that our method consistently beats vid2vid on all three
metrics on all three datasets, indicating superior image quality. Interestingly,
our method also improves upon SPADE in FID, probably as a result of reducing
temporal variance across an output video sequence. We also see improvements
over Ours w/o W.C. on almost all metrics.

In Table 2, we show human evaluation results on metrics of image realism
and temporal stability. We observe that the majority of workers rank our method
better on both metrics.
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Fig. 5: Comparison of different video generation methods on the Cityscapes
dataset. Note that for our results, the textures of the cars, roads, and sign-
boards are stable over time, while they change gradually in vid2vid and other
methods. Click on an image to play the video. Please view with Acrobat Reader.

In Fig. 5, we visualize some sequences generated by the various methods
(please zoom in and play the videos in Adobe Acrobat). We can observe that in
the first row, vid2vid [80] produces temporal artifacts in the cars parked to the
side and patterns on the road. SPADE [61], which produces one frame at a time,
produces very unstable videos, as shown in the second row. The third row shows
outputs from the partial convolution-based inpainting [48] method. It clearly
has a hard time producing visually and semantically meaningful outputs. The
fourth row shows Ours w/o W.C., an intermediate version of our method that
uses labels and optical flow-warped previous output as input. While this clearly
improves upon vid2vid in image quality and SPADE in temporal stability, it
causes flickering in trees, cars, and signboards. The last row shows our method.
Note how the textures of the cars, roads, and signboards, which are areas we
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Fig. 6: Forward-backward consistency. Click on each image to see the change
in output when the viewpoint is revisited. Note how drastically vid2vid results
change, while ours remain almost the same. Please view with Acrobat Reader.

Fig. 7: Qualitative results on the MannequinChallenge and ScanNet datasets.
Click on an image to play video. Note the results are consistent over time and
viewpoints. Please view with Acrobat Reader.

have guidance images, are stable over time. We also provide high resolution,
uncompressed videos for all three datasets on our website.

In Table 3, we compare the forward-backward consistency of different meth-
ods, and it shows that our method beats vid2vid [80] by a large margin, espe-
cially on the MannequinChallenge and ScanNet datasets (by more than a factor
of 3). Figure 6 visualizes some frames at the start and end of generation. As can
be seen, the outputs of vid2vid change dramatically, while ours are consistent.
We show additional qualitative examples in Fig. 7. We also provide additional
quantitative results on short-term consistency in Appendix C.

Generating consistent stereo outputs. Here, we show a novel application
enabled by our method through the use of guidance images. We show videos
rendered simultaneously for multiple viewpoints, specifically for a pair of stereo
viewpoints on the Cityscapes dataset in Fig. 8. For the strongest baseline, Ours
w/o W.C., the left-right videos can only be generated independently, and they
clearly are not consistent across multiple viewpoints, as highlighted by the boxes.
On the other hand, our method can generate left-right videos in sync by sharing
the underlying 3D point cloud and guidance maps. Note how the textures on
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Fig. 8: Stereo results on Cityscapes. Click on an image to see the the outputs
produced by a pair of stereo cameras. Note how our method produces images
consistent across the two views, while they differ in the highlighted regions with-
out using the world consistency. Please view with Acrobat Reader.

roads, including shadows, move in sync and remain consistent over time and
camera locations.

5 Conclusions and discussion

We presented a video-to-video synthesis framework that can achieve world con-
sistency. By using a novel guidance image extracted from the generated 3D world,
we are able to synthesize the current frame conditioned on all the past frames.
The conditioning was implemented using a novel Multi-SPADE module, which
not only led to better visual quality, but also made transplanting a single im-
age generator to a video generator possible. Comparisons on several challenging
datasets showed that our method improves upon prior state-of-the-art methods.

While advancing the state-of-the-art, our framework still has several limita-
tions. For example, the guidance image generation is based on SfM. When SfM
fails to register the 3D content, our method will also fail to ensure consistency.
Also, we do not consider a possible change in time of the day or lighting in
the current framework. In the future, our framework can benefit from improved
guidance images enabled by better 3D registration algorithms. Furthermore, the
albedo and shading of the 3D world may be disentangled to better model the
time effects. We leave these to future work.
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A Objective functions

Our objective functions contain five losses: an image GAN loss, a video GAN
loss, a perceptual loss, a flow-warping loss, and a world-consistency loss. Except
for the world-consistency loss, the others are inherited from the vid2vid [80].
Note that we replace the least square losses used in the vid2vid for GAN losses
with the hinge losses as used in SPADE [61]. We describe these terms in details
in the following.

GAN losses. Let sT1 ” ts1, s2, ..., sT u be a sequence of input semantic frames.
Let xT

1 ” tx1,x2, ...,xT u be the sequence of corresponding real video frames,
and x̃T

1 ” tx̃1, x̃2, ..., x̃T u be the synthesized frames by our generator. Define
pxt, stq as one pair of frames at a particular time instance where xt P xT

1 and
st P sT1 . The image GAN loss (Lt

I) and the video GAN loss (Lt
V ) for time t are

then defined as

Lt
I “Epxt,stqrminp0,´1`DIpxt, stqqs` (3)

Epx̃t,stqrminp0,´1´DIpx̃t, stqs (4)

Lt
V “Ext

t´K`1
rminp0,´1`DV px

t
t´K`1qs` (5)

Ex̃t´1
t´K
rminp0,´1´DV px̃

t´1
t´Kqqs (6)

where DI and DV are the image and video discriminators, respectively. The
video discriminator takes K consecutive frames and concatenates them together
for discrimination. For both GAN losses, we also accompany them by the feature
matching loss (Lt

FM ) as in pix2pixHD [81],

Lt
FM,I{V “

ÿ

i

1

Pi

”

||D
piq
tI{V upxtq ´D

piq
tI{V upx̃tq||1

ı

, (7)

whereD
piq
tI{V u denotes the i-th layer with Pi elements of the discriminator network

DI or DV .

Perceptual loss. We use the VGG-16 network [66] as a feature extractor and
minimize L1 losses between the extracted features from the real and the gener-
ated images. In particular,

Lt
P “

ÿ

i

1

Pi

”

||ψpiqpxtq ´ ψ
piqpx̃tq||1

ı

, (8)

where ψpiq denotes the i-th layer of the VGG network.

Flow-warping loss. We first warp the previous frame to the current frame
using optical flow. We then encourage the warped frame to be similar to the
current frame by using an L1 loss,

Lt
F “ ||x̃t ´wtpx̃t´1q||1 (9)
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Conv3x3(in, 16)
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Label/Flow Embedding Network
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ConvTranspose3x3(32, 16, stride=2)

Fig. 9: Label / flow-warped image embedding network.

where wt is the warping function derived from optical flow.

World-consistency loss. Finally, we add the world consistency by enforcing
the generated image to be similar to our guidance image. It is achieved by

Lt
WC “ ||x̃t ´ g̃t||1 (10)

where g̃t is our estimated guidance image.

The overall objective function is then

L “
ÿ

t

min
G

ˆ

max
DI ,DV

pλILt
I ` λV Lt

V q

˙

` (11)

min
G

`

λFMLt
FM ` λPLt

P ` λFLt
F ` λWLt

WC

˘

(12)

where λ are the weights for each individual terms, which are set to 1, 1, 10, 10,
10, 10 in all of our experiments.

Optimization details. We use the ADAM optimizer [40] with pβ1, β2q “

0, 0.999 for all experiments and network components. We use a learning rate
of 1e-4 for the encoder and generator networks (which are described below) and
4e-4 for the discriminators.
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Fig. 10: Previous image / segmentation encoder.

B Network architecture

As described in the main paper, our framework contains four components: a
label embedding network (Fig. 9), an image encoder (Fig. 10), a flow embedding
network (Fig. 9), and an image generator (Fig. 11).

Label embedding network (Fig. 9). We adopt an encoder-decoder style
network to embed the input labels into different feature representations, which
are then fed to the Multi-SPADE modules in the image generator.

Image / segmentation encoder (Fig. 10). These networks generate the input
to the main image generator. The segmentation encoder is used when generator
the first frame in the sequence, while the image encoder is used when generating
the subsequent frames. The segmentation encoder encodes the input semantics
of the first frame, while the image encoder encodes the previously generated
frame.

Flow embedding network (Fig. 9). It is used to embed the optical flow-
warped previous frame, which adopts the same architecture as the label embed-
ding network except for the number of input channels. The embedded features
are again fed to the Multi-SPADE layers in the main image generator.

Image generator (Fig. 11). The generator consists of a series of Multi-SPADE
residual blocks (M-SPADE ResBlks) and upsampling layers. The structure of
each M-SPADE Resblk is shown in Fig. 12, which replaces the SPADE layers in
the original SPADE Resblks with Multi-SPADE layers.

Discriminators. We use the same image and video discriminators as vid2vid [80].
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Fig. 11: Image generator.
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Fig. 12: Multi-SPADE Residual Block and Multi-SPADE module.

C Additional Results

Short-term temporal video consistency. For each sequence, we first take
two neighboring frames from the ground truth images to compute the optical
flow between them using FlowNet2 [32]. We then use the optical flow to warp
the corresponding synthesized images and compute the L1 distance between the
warped image and the target image, in RGB space, normalized by the number of
pixels and channels. This process is repeated for all pairs of neighboring frames
in all sequences and averaged. The result is shown in below in Table 4. As can
be seen, Ours w/o World Consistency (W.C.) consistently performs better than
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vid2vid [80], and Ours (with world consistency) again consistently outperforms
Ours w/o W.C.

Table 4: Short-term temporal consistency scores. Lower is better.
Dataset vid2vid [80] Ours w/o W.C. Ours

Cityscapes 0.0036 0.0032 0.0029
MannequinChallenge 0.0397 0.0319 0.0312
ScanNet 0.0351 0.0278 0.0192
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