Source code for imaginaire.trainers.spade

# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import functools
import math

import torch
import torch.nn.functional as F

from imaginaire.evaluation import compute_fid
from imaginaire.losses import (FeatureMatchingLoss, GANLoss, GaussianKLLoss,
                               PerceptualLoss)
from imaginaire.trainers.base import BaseTrainer
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.model_average import reset_batch_norm, \
    calibrate_batch_norm_momentum
from imaginaire.utils.misc import split_labels, to_device
from imaginaire.utils.visualization import tensor2label


[docs]class Trainer(BaseTrainer): r"""Initialize SPADE trainer. Args: cfg (Config): Global configuration. net_G (obj): Generator network. net_D (obj): Discriminator network. opt_G (obj): Optimizer for the generator network. opt_D (obj): Optimizer for the discriminator network. sch_G (obj): Scheduler for the generator optimizer. sch_D (obj): Scheduler for the discriminator optimizer. train_data_loader (obj): Train data loader. val_data_loader (obj): Validation data loader. """ def __init__(self, cfg, net_G, net_D, opt_G, opt_D, sch_G, sch_D, train_data_loader, val_data_loader): super(Trainer, self).__init__(cfg, net_G, net_D, opt_G, opt_D, sch_G, sch_D, train_data_loader, val_data_loader) if cfg.data.type == 'imaginaire.datasets.paired_videos': self.video_mode = True else: self.video_mode = False def _init_loss(self, cfg): r"""Initialize loss terms. Args: cfg (obj): Global configuration. """ self.criteria['GAN'] = GANLoss(cfg.trainer.gan_mode) self.weights['GAN'] = cfg.trainer.loss_weight.gan # Setup the perceptual loss. Note that perceptual loss can run in # fp16 mode for additional speed. We find that running on fp16 mode # leads to improve training speed while maintaining the same accuracy. if hasattr(cfg.trainer, 'perceptual_loss'): self.criteria['Perceptual'] = \ PerceptualLoss( network=cfg.trainer.perceptual_loss.mode, layers=cfg.trainer.perceptual_loss.layers, weights=cfg.trainer.perceptual_loss.weights) self.weights['Perceptual'] = cfg.trainer.loss_weight.perceptual # Setup the feature matching loss. self.criteria['FeatureMatching'] = FeatureMatchingLoss() self.weights['FeatureMatching'] = \ cfg.trainer.loss_weight.feature_matching # Setup the Gaussian KL divergence loss. self.criteria['GaussianKL'] = GaussianKLLoss() self.weights['GaussianKL'] = cfg.trainer.loss_weight.kl def _start_of_iteration(self, data, current_iteration): r"""Model specific custom start of iteration process. We will do two things. First, put all the data to GPU. Second, we will resize the input so that it becomes multiple of the factor for bug-free convolutional operations. This factor is given by the yaml file. E.g., base = getattr(self.net_G, 'base', 32) Args: data (dict): The current batch. current_iteration (int): The iteration number of the current batch. """ data = to_device(data, 'cuda') data = self._resize_data(data) return data
[docs] def gen_forward(self, data): r"""Compute the loss for SPADE generator. Args: data (dict): Training data at the current iteration. """ net_G_output = self.net_G(data) net_D_output = self.net_D(data, net_G_output) self._time_before_loss() output_fake = self._get_outputs(net_D_output, real=False) self.gen_losses['GAN'] = self.criteria['GAN'](output_fake, True, dis_update=False) self.gen_losses['FeatureMatching'] = self.criteria['FeatureMatching']( net_D_output['fake_features'], net_D_output['real_features']) if self.net_G_module.use_style_encoder: self.gen_losses['GaussianKL'] = \ self.criteria['GaussianKL'](net_G_output['mu'], net_G_output['logvar']) else: self.gen_losses['GaussianKL'] = \ self.gen_losses['GAN'].new_tensor([0]) if hasattr(self.cfg.trainer, 'perceptual_loss'): self.gen_losses['Perceptual'] = self.criteria['Perceptual']( net_G_output['fake_images'], data['images']) total_loss = self.gen_losses['GAN'].new_tensor([0]) for key in self.criteria: total_loss += self.gen_losses[key] * self.weights[key] self.gen_losses['total'] = total_loss return total_loss
[docs] def dis_forward(self, data): r"""Compute the loss for SPADE discriminator. Args: data (dict): Training data at the current iteration. """ with torch.no_grad(): net_G_output = self.net_G(data) net_G_output['fake_images'] = net_G_output['fake_images'].detach() net_D_output = self.net_D(data, net_G_output) self._time_before_loss() output_fake = self._get_outputs(net_D_output, real=False) output_real = self._get_outputs(net_D_output, real=True) fake_loss = self.criteria['GAN'](output_fake, False, dis_update=True) true_loss = self.criteria['GAN'](output_real, True, dis_update=True) self.dis_losses['GAN/fake'] = fake_loss self.dis_losses['GAN/true'] = true_loss self.dis_losses['GAN'] = fake_loss + true_loss total_loss = self.dis_losses['GAN'] * self.weights['GAN'] self.dis_losses['total'] = total_loss return total_loss
def _get_visualizations(self, data): r"""Compute visualization image. We will first recalculate the batch statistics for the moving average model. Args: data (dict): The current batch. """ self.recalculate_batch_norm_statistics( self.train_data_loader) with torch.no_grad(): label_lengths = self.train_data_loader.dataset.get_label_lengths() labels = split_labels(data['label'], label_lengths) # Get visualization of the segmentation mask. vis_images = list() vis_images.append(data['images']) net_G_output = self.net_G(data, random_style=True) # print(labels.keys()) for key in labels.keys(): if 'seg' in key: segmaps = tensor2label(labels[key], label_lengths[key], output_normalized_tensor=True) segmaps = torch.cat([x.unsqueeze(0) for x in segmaps], 0) vis_images.append(segmaps) if 'edge' in key: edgemaps = torch.cat((labels[key], labels[key], labels[key]), 1) vis_images.append(edgemaps) vis_images.append(net_G_output['fake_images']) if self.cfg.trainer.model_average_config.enabled: net_G_model_average_output = \ self.net_G.module.averaged_model(data, random_style=True) vis_images.append(net_G_model_average_output['fake_images']) return vis_images
[docs] def recalculate_batch_norm_statistics(self, data_loader): r"""Update the statistics in the moving average model. Args: data_loader (pytorch data loader): Data loader for estimating the statistics. """ if not self.cfg.trainer.model_average_config.enabled: return model_average_iteration = \ self.cfg.trainer.model_average_config.num_batch_norm_estimation_iterations if model_average_iteration == 0: return with torch.no_grad(): # Accumulate bn stats.. self.net_G.module.averaged_model.train() # Reset running stats. self.net_G.module.averaged_model.apply(reset_batch_norm) for cal_it, cal_data in enumerate(data_loader): if cal_it >= model_average_iteration: print('Done with {} iterations of updating batch norm ' 'statistics'.format(model_average_iteration)) break # cal_data = to_device(cal_data, 'cuda') cal_data = self._start_of_iteration(cal_data, 0) # Averaging over all batches self.net_G.module.averaged_model.apply( calibrate_batch_norm_momentum) self.net_G.module.averaged_model(cal_data)
[docs] def write_metrics(self): r"""If moving average model presents, we have two meters one for regular FID and one for average FID. If no moving average model, we just report average FID. """ if self.cfg.trainer.model_average_config.enabled: regular_fid, average_fid = self._compute_fid() metric_dict = {'FID/average': average_fid, 'FID/regular': regular_fid} self._write_to_meters(metric_dict, self.metric_meters, reduce=False) else: regular_fid = self._compute_fid() metric_dict = {'FID/regular': regular_fid} self._write_to_meters(metric_dict, self.metric_meters, reduce=False) self._flush_meters(self.metric_meters)
def _compute_fid(self): r"""We will compute FID for the regular model using the eval mode. For the moving average model, we will use the eval mode. """ self.net_G.eval() net_G_for_evaluation = \ functools.partial(self.net_G, random_style=True) regular_fid_path = self._get_save_path('regular_fid', 'npy') preprocess = \ functools.partial(self._start_of_iteration, current_iteration=0) regular_fid_value = compute_fid(regular_fid_path, self.val_data_loader, net_G_for_evaluation, preprocess=preprocess) print('Epoch {:05}, Iteration {:09}, Regular FID {}'.format( self.current_epoch, self.current_iteration, regular_fid_value)) if self.cfg.trainer.model_average_config.enabled: avg_net_G_for_evaluation = \ functools.partial(self.net_G.module.averaged_model, random_style=True) fid_path = self._get_save_path('average_fid', 'npy') fid_value = compute_fid(fid_path, self.val_data_loader, avg_net_G_for_evaluation, preprocess=preprocess) print('Epoch {:05}, Iteration {:09}, FID {}'.format( self.current_epoch, self.current_iteration, fid_value)) self.net_G.float() return regular_fid_value, fid_value else: self.net_G.float() return regular_fid_value def _resize_data(self, data): r"""Resize input label maps and images so that it can be properly generated by the generator. Args: data (dict): Input dictionary contains 'label' and 'image fields. """ base = getattr(self.net_G, 'base', 32) sy = math.floor(data['label'].size()[2] * 1.0 // base) * base sx = math.floor(data['label'].size()[3] * 1.0 // base) * base data['label'] = F.interpolate( data['label'], size=[sy, sx], mode='nearest') if 'images' in data.keys(): data['images'] = F.interpolate( data['images'], size=[sy, sx], mode='bicubic') return data