Source code for imaginaire.evaluation.pretrained

# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md

"""
Modified from
https://github.com/mseitzer/pytorch-fid

Code adapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
   https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import torch
import torch.nn.functional as F
from torch import nn

try:
    from torchvision.models.utils import load_state_dict_from_url
except ImportError:
    from torch.utils.model_zoo import load_url as load_state_dict_from_url

from torchvision.models import inception, inception_v3, vgg16

# Inception weights ported to Pytorch from
# https://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases' \
                  '/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'


[docs]class SwAV(nn.Module): def __init__(self): super().__init__() self.model = torch.hub.load('facebookresearch/swav', 'resnet50', pretrained=True) self.model.fc = torch.nn.Sequential()
[docs] def forward(self, x, align_corners=True): y = self.model(F.interpolate( x, size=(224, 224), mode='bicubic', align_corners=align_corners)) return y
[docs]class Vgg16(nn.Module): def __init__(self): super().__init__() self.model = vgg16(pretrained=True, init_weights=False) self.model.classifier = torch.nn.Sequential( *[self.model.classifier[i] for i in range(4)] )
[docs] def forward(self, x, align_corners=True): y = self.model(F.interpolate( x, size=(224, 224), mode='bicubic', align_corners=align_corners)) return y
[docs]class InceptionV3(nn.Module): def __init__(self): super().__init__() self.model = inception_v3(transform_input=False, pretrained=True, init_weights=False) self.model.fc = torch.nn.Sequential()
[docs] def forward(self, x, align_corners=True): y = self.model(F.interpolate( x, size=(299, 299), mode='bicubic', align_corners=align_corners)) return y
[docs]class TFInceptionV3(nn.Module): def __init__(self): super().__init__() self.model = inception_v3(transform_input=False, num_classes=1008, aux_logits=False, pretrained=False, init_weights=False) self.model.Mixed_5b = FIDInceptionA(192, pool_features=32) self.model.Mixed_5c = FIDInceptionA(256, pool_features=64) self.model.Mixed_5d = FIDInceptionA(288, pool_features=64) self.model.Mixed_6b = FIDInceptionC(768, channels_7x7=128) self.model.Mixed_6c = FIDInceptionC(768, channels_7x7=160) self.model.Mixed_6d = FIDInceptionC(768, channels_7x7=160) self.model.Mixed_6e = FIDInceptionC(768, channels_7x7=192) self.model.Mixed_7b = FIDInceptionE_1(1280) self.model.Mixed_7c = FIDInceptionE_2(2048) state_dict = load_state_dict_from_url( FID_WEIGHTS_URL, progress=True, map_location='cpu' ) self.model.load_state_dict(state_dict) self.model.fc = torch.nn.Sequential()
[docs] def forward(self, x, align_corners=True): y = self.model(F.interpolate( x, size=(299, 299), mode='bicubic', align_corners=align_corners)) return y
[docs]class FIDInceptionA(inception.InceptionA): """InceptionA block patched for FID computation""" def __init__(self, in_channels, pool_features): super(FIDInceptionA, self).__init__(in_channels, pool_features)
[docs] def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return torch.cat(outputs, 1)
[docs]class FIDInceptionC(inception.InceptionC): """InceptionC block patched for FID computation""" def __init__(self, in_channels, channels_7x7): super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
[docs] def forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return torch.cat(outputs, 1)
[docs]class FIDInceptionE_1(inception.InceptionE): """First InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_1, self).__init__(in_channels)
[docs] def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1)
[docs]class FIDInceptionE_2(inception.InceptionE): """Second InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_2, self).__init__(in_channels)
[docs] def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: The FID Inception model uses max pooling instead of average # pooling. This is likely an error in this specific Inception # implementation, as other Inception models use average pooling here # (which matches the description in the paper). branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1)