Source code for imaginaire.discriminators.gancraft

# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
from imaginaire.layers import Conv2dBlock
from imaginaire.utils.data import get_paired_input_label_channel_number, get_paired_input_image_channel_number
from imaginaire.utils.distributed import master_only_print as print
[docs]class Discriminator(nn.Module): r"""Multi-resolution patch discriminator. Based on FPSE discriminator but with N+1 labels. Args: dis_cfg (obj): Discriminator definition part of the yaml config file. data_cfg (obj): Data definition part of the yaml config file. """ def __init__(self, dis_cfg, data_cfg): super(Discriminator, self).__init__() # We assume the first datum is the ground truth image. image_channels = get_paired_input_image_channel_number(data_cfg) # Calculate number of channels in the input label. num_labels = get_paired_input_label_channel_number(data_cfg) self.use_label = getattr(dis_cfg, 'use_label', True) # Override number of input channels if hasattr(dis_cfg, 'image_channels'): image_channels = dis_cfg.image_channels if hasattr(dis_cfg, 'num_labels'): num_labels = dis_cfg.num_labels else: # We assume the first datum is the ground truth image. image_channels = get_paired_input_image_channel_number(data_cfg) # Calculate number of channels in the input label. num_labels = get_paired_input_label_channel_number(data_cfg) if not self.use_label: num_labels = 2 # ignore + true # Build the discriminator. num_filters = getattr(dis_cfg, 'num_filters', 128) weight_norm_type = getattr(dis_cfg, 'weight_norm_type', 'spectral') fpse_kernel_size = getattr(dis_cfg, 'fpse_kernel_size', 3) fpse_activation_norm_type = getattr(dis_cfg, 'fpse_activation_norm_type', 'none') do_multiscale = getattr(dis_cfg, 'do_multiscale', False) smooth_resample = getattr(dis_cfg, 'smooth_resample', False) no_label_except_largest_scale = getattr(dis_cfg, 'no_label_except_largest_scale', False) self.fpse_discriminator = FPSEDiscriminator( image_channels, num_labels, num_filters, fpse_kernel_size, weight_norm_type, fpse_activation_norm_type, do_multiscale, smooth_resample, no_label_except_largest_scale) def _single_forward(self, input_label, input_image, weights): output_list, features_list = self.fpse_discriminator(input_image, input_label, weights) return output_list, [features_list]
[docs] def forward(self, data, net_G_output, weights=None, incl_real=False, incl_pseudo_real=False): r"""GANcraft discriminator forward. Args: data (dict): - data (N x C1 x H x W tensor) : Ground truth images. - label (N x C2 x H x W tensor) : Semantic representations. - z (N x style_dims tensor): Gaussian random noise. net_G_output (dict): - fake_images (N x C1 x H x W tensor) : Fake images. Returns: output_x (dict): - real_outputs (list): list of output tensors produced by individual patch discriminators for real images. - real_features (list): list of lists of features produced by individual patch discriminators for real images. - fake_outputs (list): list of output tensors produced by individual patch discriminators for fake images. - fake_features (list): list of lists of features produced by individual patch discriminators for fake images. """ output_x = dict() # Fake. fake_images = net_G_output['fake_images'] if self.use_label: fake_labels = data['fake_masks'] else: fake_labels = torch.zeros([fake_images.size(0), 2, fake_images.size( 2), fake_images.size(3)], device=fake_images.device, dtype=fake_images.dtype) fake_labels[:, 1, :, :] = 1 output_x['fake_outputs'], output_x['fake_features'] = \ self._single_forward(fake_labels, fake_images, None) # Real. if incl_real: real_images = data['images'] if self.use_label: real_labels = data['real_masks'] else: real_labels = torch.zeros([real_images.size(0), 2, real_images.size( 2), real_images.size(3)], device=real_images.device, dtype=real_images.dtype) real_labels[:, 1, :, :] = 1 output_x['real_outputs'], output_x['real_features'] = \ self._single_forward(real_labels, real_images, None) # pseudo-Real. if incl_pseudo_real: preal_images = data['pseudo_real_img'] preal_labels = data['fake_masks'] if not self.use_label: preal_labels = torch.zeros([preal_images.size(0), 2, preal_images.size( 2), preal_images.size(3)], device=preal_images.device, dtype=preal_images.dtype) preal_labels[:, 1, :, :] = 1 output_x['pseudo_real_outputs'], output_x['pseudo_real_features'] = \ self._single_forward(preal_labels, preal_images, None) return output_x
[docs]class FPSEDiscriminator(nn.Module): def __init__(self, num_input_channels, num_labels, num_filters, kernel_size, weight_norm_type, activation_norm_type, do_multiscale, smooth_resample, no_label_except_largest_scale): super().__init__() self.do_multiscale = do_multiscale self.no_label_except_largest_scale = no_label_except_largest_scale padding = int(np.ceil((kernel_size - 1.0) / 2)) nonlinearity = 'leakyrelu' stride1_conv2d_block = \ functools.partial(Conv2dBlock, kernel_size=kernel_size, stride=1, padding=padding, weight_norm_type=weight_norm_type, activation_norm_type=activation_norm_type, nonlinearity=nonlinearity, # inplace_nonlinearity=True, order='CNA') down_conv2d_block = \ functools.partial(Conv2dBlock, kernel_size=kernel_size, stride=2, padding=padding, weight_norm_type=weight_norm_type, activation_norm_type=activation_norm_type, nonlinearity=nonlinearity, # inplace_nonlinearity=True, order='CNA') latent_conv2d_block = \ functools.partial(Conv2dBlock, kernel_size=1, stride=1, weight_norm_type=weight_norm_type, activation_norm_type=activation_norm_type, nonlinearity=nonlinearity, # inplace_nonlinearity=True, order='CNA') # bottom-up pathway self.enc1 = down_conv2d_block(num_input_channels, num_filters) # 3 self.enc2 = down_conv2d_block(1 * num_filters, 2 * num_filters) # 7 self.enc3 = down_conv2d_block(2 * num_filters, 4 * num_filters) # 15 self.enc4 = down_conv2d_block(4 * num_filters, 8 * num_filters) # 31 self.enc5 = down_conv2d_block(8 * num_filters, 8 * num_filters) # 63 # top-down pathway # self.lat1 = latent_conv2d_block(num_filters, 2 * num_filters) # Zekun self.lat2 = latent_conv2d_block(2 * num_filters, 4 * num_filters) self.lat3 = latent_conv2d_block(4 * num_filters, 4 * num_filters) self.lat4 = latent_conv2d_block(8 * num_filters, 4 * num_filters) self.lat5 = latent_conv2d_block(8 * num_filters, 4 * num_filters) # upsampling self.upsample2x = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) # final layers self.final2 = stride1_conv2d_block(4 * num_filters, 2 * num_filters) self.output = Conv2dBlock(num_filters * 2, num_labels+1, kernel_size=1) if self.do_multiscale: self.final3 = stride1_conv2d_block(4 * num_filters, 2 * num_filters) self.final4 = stride1_conv2d_block(4 * num_filters, 2 * num_filters) if self.no_label_except_largest_scale: self.output3 = Conv2dBlock(num_filters * 2, 2, kernel_size=1) self.output4 = Conv2dBlock(num_filters * 2, 2, kernel_size=1) else: self.output3 = Conv2dBlock(num_filters * 2, num_labels+1, kernel_size=1) self.output4 = Conv2dBlock(num_filters * 2, num_labels+1, kernel_size=1) self.interpolator = functools.partial(F.interpolate, mode='nearest') if smooth_resample: self.interpolator = self.smooth_interp
[docs] @staticmethod def smooth_interp(x, size): r"""Smooth interpolation of segmentation maps. Args: x (4D tensor): Segmentation maps. size(2D list): Target size (H, W). """ x = F.interpolate(x, size=size, mode='area') onehot_idx = torch.argmax(x, dim=-3, keepdims=True) x.fill_(0.0) x.scatter_(1, onehot_idx, 1.0) return x
# Weights: [N C]
[docs] def forward(self, images, segmaps, weights=None): # Assume images 256x256 # bottom-up pathway feat11 = self.enc1(images) # 128 feat12 = self.enc2(feat11) # 64 feat13 = self.enc3(feat12) # 32 feat14 = self.enc4(feat13) # 16 feat15 = self.enc5(feat14) # 8 # top-down pathway and lateral connections feat25 = self.lat5(feat15) # 8 feat24 = self.upsample2x(feat25) + self.lat4(feat14) # 16 feat23 = self.upsample2x(feat24) + self.lat3(feat13) # 32 feat22 = self.upsample2x(feat23) + self.lat2(feat12) # 64 # final prediction layers feat32 = self.final2(feat22) results = [] label_map = self.interpolator(segmaps, size=feat32.size()[2:]) pred2 = self.output(feat32) # N, num_labels+1, H//4, W//4 features = [feat11, feat12, feat13, feat14, feat15, feat25, feat24, feat23, feat22] if weights is not None: label_map = label_map * weights[..., None, None] results.append({'pred': pred2, 'label': label_map}) if self.do_multiscale: feat33 = self.final3(feat23) pred3 = self.output3(feat33) feat34 = self.final4(feat24) pred4 = self.output4(feat34) if self.no_label_except_largest_scale: label_map3 = torch.ones([pred3.size(0), 1, pred3.size(2), pred3.size(3)], device=pred3.device) label_map4 = torch.ones([pred4.size(0), 1, pred4.size(2), pred4.size(3)], device=pred4.device) else: label_map3 = self.interpolator(segmaps, size=pred3.size()[2:]) label_map4 = self.interpolator(segmaps, size=pred4.size()[2:]) if weights is not None: label_map3 = label_map3 * weights[..., None, None] label_map4 = label_map4 * weights[..., None, None] results.append({'pred': pred3, 'label': label_map3}) results.append({'pred': pred4, 'label': label_map4}) return results, features